



#### Implementation of a Low Impact Development Testbed at The University of Texas at San Antonio Main Campus

# **PI:** Dr. Marcio Giacomoni and Dr. Heather Shipley



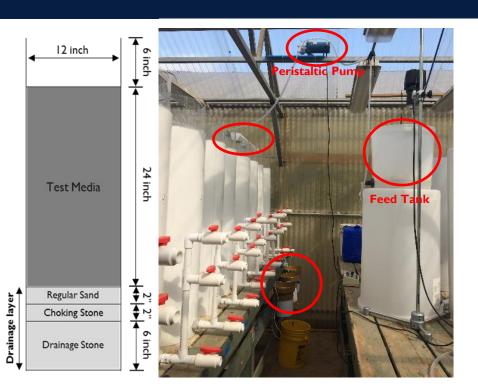
## **Project Scope, Cost and Schedule**

 Goal: assess the stormwater treatment of bioretentions and sand filter basins

- Original Agreement: June 1<sup>st</sup> 2017 to May 31<sup>st</sup> 2020
- Two No-Cost Extension Amendments due to weather and construction delays

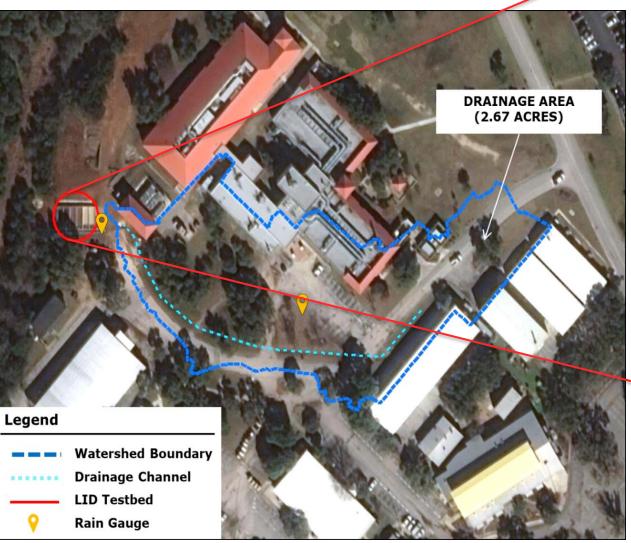
| Activity/Task                                    | 20 | 17 |    | 20 | )18 |    |    | 20 | 19 |    |    | 20 | )20 |    |    | 20 | 21 |    |    | 20 | )22 |    |
|--------------------------------------------------|----|----|----|----|-----|----|----|----|----|----|----|----|-----|----|----|----|----|----|----|----|-----|----|
|                                                  | Q3 | Q4 | Q1 | Q2 | Q3  | Q4 | Q1 | Q2 | Q3 | Q4 | Q1 | Q2 | Q3  | Q4 | Q1 | Q2 | Q3 | Q4 | Q1 | Q2 | Q3  | Q4 |
| Objective 1 - Column Experiments                 |    |    |    |    |     |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |     |    |
| 1.1 - Design and Construction of Columns         | х  |    |    |    |     |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |     |    |
| 1.2 - Water Quality Experiments                  |    | х  | х  | х  |     |    | х  |    |    |    |    |    |     |    |    |    |    |    |    |    |     |    |
| 1.3 - Identification of Best Parameters          |    |    |    | х  | х   | х  |    |    |    |    |    |    |     |    |    |    |    |    |    |    |     |    |
| Objective 2 - Implementation of the BMP Test Bed |    |    |    |    |     |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |     |    |
| 2.1 - Site Definition/Permiting                  | х  |    |    |    |     |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |     |    |
| 2.2 - Pre-Implementation Monitoring              | х  | х  | х  | х  | х   | х  | х  | х  |    |    |    |    |     |    |    |    |    |    |    |    |     |    |
| 2.3 - Design                                     |    | х  | х  | х  |     |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |     |    |
| 2.4 - Construction                               |    |    | х  | х  | х   | х  | х  | х  |    |    |    |    |     |    |    |    |    |    |    |    |     |    |
| Objective 3 - BMP Test Bed Monitoring            |    |    |    |    |     |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |     |    |
| 3.1 - Monitoring Equipment Installation          |    |    |    |    | х   | х  | х  | х  |    |    |    |    |     |    |    |    |    |    |    |    |     |    |
| 3.2 - Sample Collection and Laboratory Testing   |    |    |    |    |     |    |    | х  | х  | х  | х  | х  | х   | х  | х  | х  | х  | х  | х  | х  | х   | x  |
| 3.3 - Synthesis and Recommendations              |    |    |    |    |     |    |    |    |    |    |    |    |     | х  | х  | х  | х  | х  | х  | х  | х   | х  |
| Objective 4 - Education Program                  |    |    |    |    |     |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |     |    |
| 4.1 - Water Sustainability and LID modules       |    |    |    |    |     |    |    |    |    | х  |    |    |     |    |    |    |    |    |    |    | х   | х  |
| 4.2 - K-12 students/schools Tours                |    |    |    |    |     |    |    |    | x  |    |    |    | х   |    |    | х  |    |    | х  |    |     |    |

#### • \$1,069,113


### **Project Deliverables and Questions**

- COSA / UTSA Agreement signed on June 2017
  - The Project shall produce the following deliverables:
    - a) Optimal bioretention design for San Antonio using bioretention columns experiments.
    - b) Full-scale BMP test bed, composed of a series of parallel bioretention and sand filter cells.
    - c) Monitoring before and after the implementation of the BMP LID test bed.
    - d) Education of the public and students about stormwater sustainability.
  - The Project shall answer the following questions:
    - a) What are the water quality differences between treating stormwater with sand filter and bioretention basins?
    - b) What are the water quality differences between treating stormwater with and without liners?
    - c) How much recharge can be generated in an unlined BMP?
    - d) What is the best design of bioretention basins in terms of soil and plants for the San Antonio region?

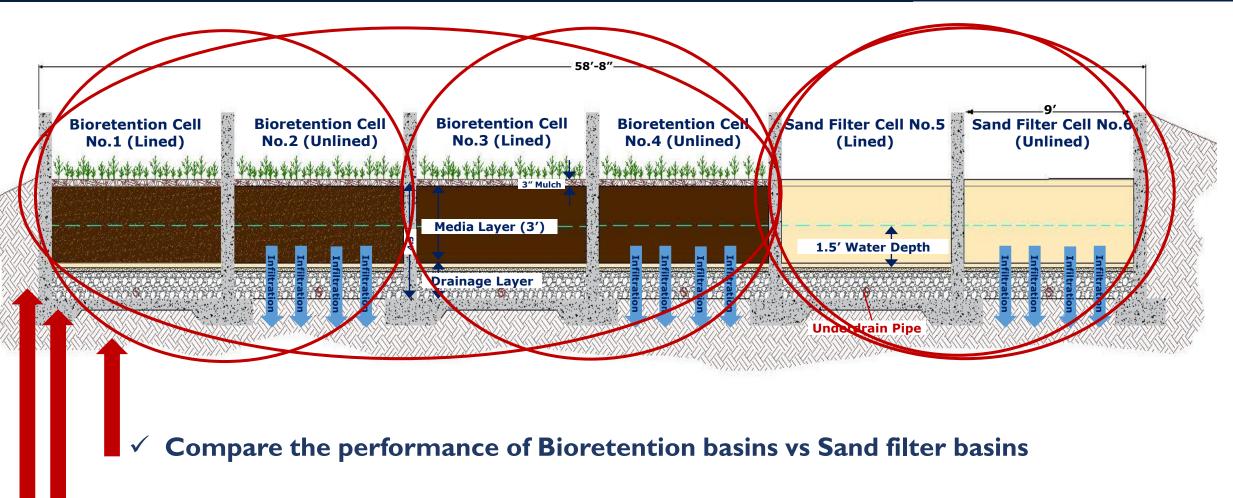
# **Column Experiments**


- 12 columns
- Nine media and three plants were tested:
  - Regular Sand
  - Limestone Sand
  - BioFilter 5-3-2 Sandy Loam
    - Biosolids from WWTP
  - Recycled Glass+BioMix
  - Lime-Mix Bioretention
    - media with crushed limestone
    - Developed at UTSA Lab
- Lessons Learned:
  - Quality control of media was challenging
    - Gradation, and Phosphorus & organic matter content
  - Close collaboration with Soil Media providers
  - Limestone sand improved results
    - High absorption capacity by Calcium and Magnesium
  - Plants enhanced treatment, but no difference between species

- Blend#1: Blend of limestone sand, fines and organics provided by the Urban Land Clearing Soil & Compost Company;
- Blend#2: Blend #1 with addition of Iron;
- BioFilter 4-3-3: is the improved version of BioFilter 5-3-2 with green-waste instead of bio-solids;
- **BioFilter 4-3-3MS:** similar composition of the BioFilter 4-3-3 with **limestone sand** instead of regular sand.



| Pollutant                                        | Target Concentration $C_{in}^{Target}$ (mg/L) |
|--------------------------------------------------|-----------------------------------------------|
| TSS                                              | 100                                           |
| Nitrate (NOX) as N                               | 0.3                                           |
| Total Kjeldhal Nitrogen<br>(TKN) (Org N + NH3-N) | 1.85                                          |
| Total Phosphorus (TP)                            | 0.2                                           |
| Total Copper (TCu)                               | 0.02                                          |
| Total Zinc (TZn)                                 | 0.13                                          |
| Total Lead (TPb)                                 | 0.08                                          |


### **The LID Testbed**





#### Six parallel cells (9 ft x 30 ft x 4.5 ft) filled with:

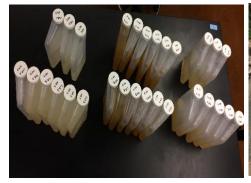
- Custom limestone mixture (Cells I & 2)
- Regular bioretention mixture (Cells 3 & 4)
- Limestone sand (Cells 5 & 6)



Compare the impact of filtration media composition in two bioretention designs

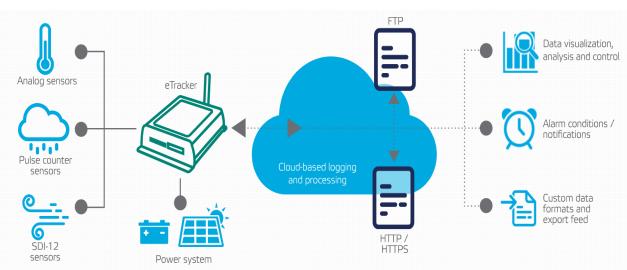
Compare the performance of Lined vs Unlined cells to evaluate the impact of liners

# **Monitoring the LID Testbed**


#### **Stormwater Quantity:**

5-min interval

Rainfall, flowrate, water level and soil moisture content


#### **Stormwater Quality:**

- Flow-paced sampling at the inlet and six outlets
- Total and volatile suspended solids
- Nitrate and total nitrogen
- Phosphate and total phosphorus
- Dissolved and total heavy metals (lead, copper and zinc)
- Total and E. coli coliform bacteria
- pH, DO and conductivity





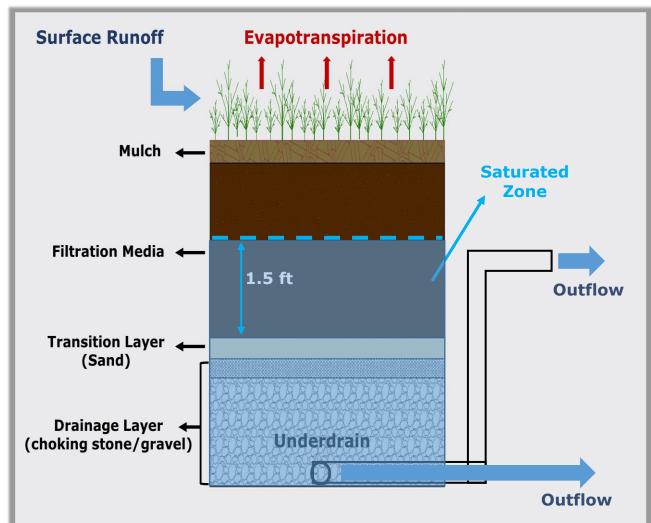






### **Monitoring the LID Testbed**

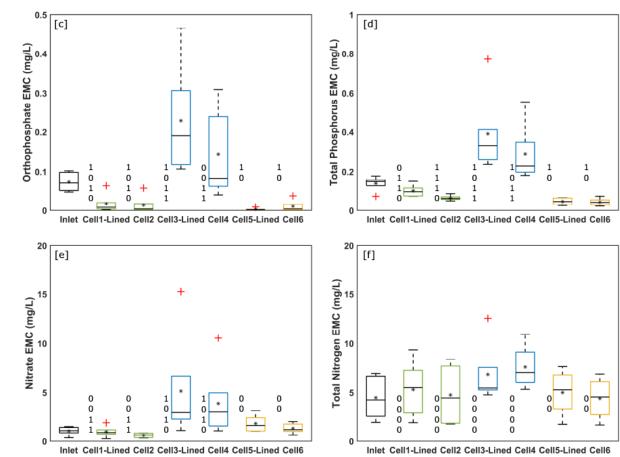
**Phase I** – without Internal Water Storage


21 months of monitoring: June 2019-April 2021

Total of **9 storm events** captured Total treated volume  $\approx$  40,000 cf

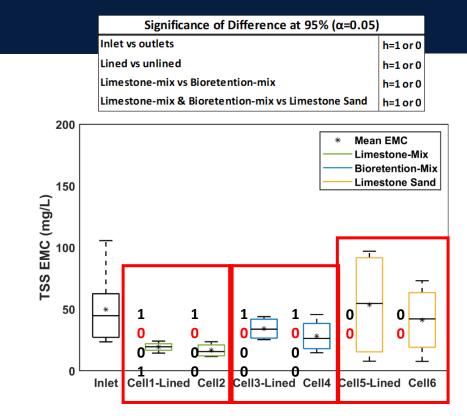
**Phase II – with Internal Water Storage** 

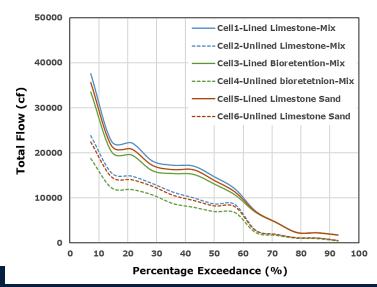
20 months of monitoring: April 2021 - January 2023


Total of **6 storm events** captured so far Total treated volume  $\approx$  80,000 cf



## Water Quality Results


- What are the water quality differences between treating stormwater with sand filter and bioretention basins?
  - No statistical difference at 95% confidence interval was found between sand filter basins and bioretention basins for most parameters
    - Our sand filter basin used limestone sand
  - Regular bioretention-mix leached most pollutants due to its high nutrient and organic matter content


| Significance of Difference at 95% (α=0.05)         |          |  |  |  |  |  |  |
|----------------------------------------------------|----------|--|--|--|--|--|--|
| Inlet vs outlets                                   | h=1 or 0 |  |  |  |  |  |  |
| Lined vs unlined                                   | h=1 or 0 |  |  |  |  |  |  |
| Limestone-mix vs Bioretention-mix                  | h=1 or 0 |  |  |  |  |  |  |
| Limestone-mix & Bioretention-mix vs Limestone Sand | h=1 or 0 |  |  |  |  |  |  |



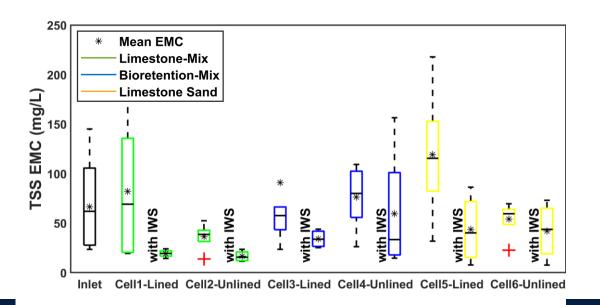
# Water Quality Results

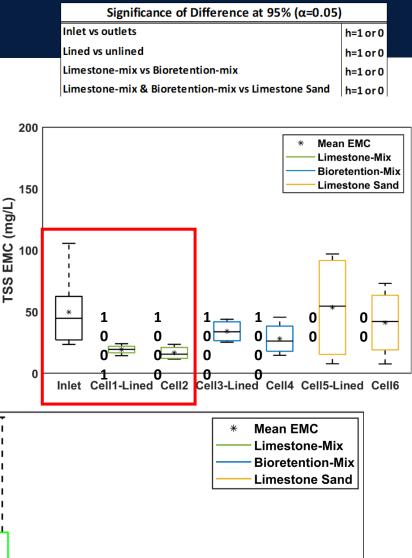
- What are the water quality differences between treating stormwater with and without liners?
  - No statistical difference at 95% confidence in water quality was observed between lined and unlined cells
- How much recharge can be generated in an unlined BMP?
  - Unlined cells showed approximately 20% reduced outflow compared to lined cells without IWS
  - The potential for infiltration is higher if no underdrain is used.

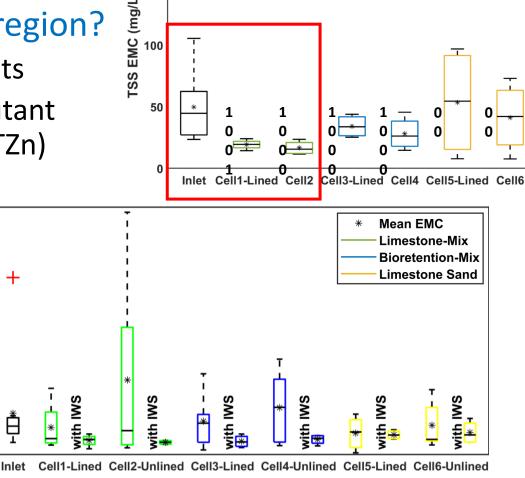




## Water Quality Results


- What is the best design of bioretention basins in terms of soil and plants for the San Antonio region?
  - Limestone mix media provided overall best results
  - Internal water storage operation enhanced pollutant removal, particularly for TSS and heavy metals (TZn)


500


400

TZn EMC (ug/L) 00 00

100







## **Educational Program Outcomes**

#### • K-I2 students/school tours:

- ✓ 2019 hosted total of 179 middle/high school students for the UTSA engineering summer camps
- $\checkmark$  2020 we prepared videos of the LID testbed and filtration lab experiment for the virtual engineering summer camp
- ✓ 2021 hosted 6 undergraduate students for the STIR-UP student cohort
- ✓ 2022 hosted total of 160 middle/high school students for the Engineering week Lab Exhibit
- Three education signages were designed and implemented at the LID testbed
- UTSA Undergraduate Research Showcase

   ✓ Participated in 2018, 2019 and 2022
   ✓ Vida Mohagheghpour, our undergrad research assistant
   won the second place for best oral presentation

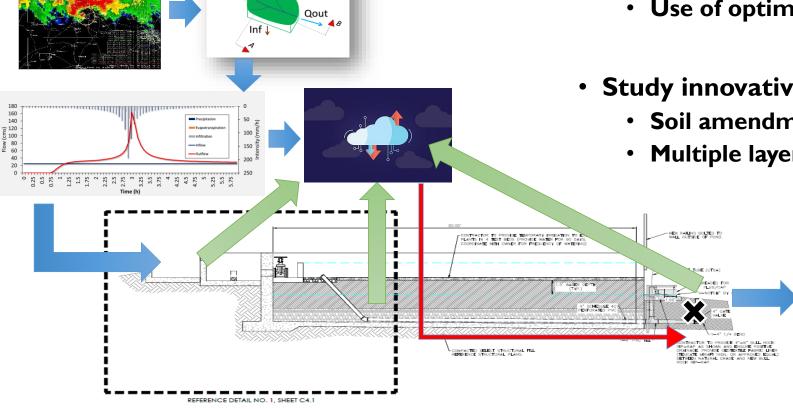


### **Educational Program Outcomes**

- Students involved in the LID testbed project (9 undergraduate, I MS, 2 PhDs, 2 Post-Docs)
  - Crista Cerda, Undergraduate research assistant 2017-2019
  - Aldo Hernandez, Undergraduate research assistant 2017-2018
  - Alexander Manjarres, Undergraduate research assistant 2017-2018
  - Armando Montante, Undergraduate research assistant 2018-2019
  - Alani Hall, Undergraduate research assistant 2018-2019
  - Akanksha Matta, Postdoctoral fellow 2019
  - Maya Abounasr, Undergraduate research assistant 2019-2020
  - Michelle Barkley, Undergraduate research assistant 2019-2021
  - Hanieh Soleimanifar, Postdoctoral fellow 2020
  - Marissa Lopez, Undergraduate research assistant 2021
  - Vida Mohagheghpour, Undergraduate research assistant 2021-2022
  - Ivan Cuervo, Graduate research assistant 2021-2022
  - Cesar do Lago, Graduate research assistant 2021-2022
  - Abtin Shahrokh Hamedani, Graduate research assistant 2018-2022

- Educational Modules were Developed:
  - Chap. I) Water Resources Sustainability
  - Chap. 2) Low Impact Development
  - Chap. 3) LID Design
  - Chap. 4) LID Modeling
  - Chap. 5) Sand Filter Basins
  - Chap. 6) Bioretentions
  - Chap. 7) LID Testbed
- Audiences:
  - Engineering and environmental students at UTSA,
  - Summer field trips for k-12 students interested in engineering and environmental sciences.

#### Recommendations


- The results support the following:
  - 1. The need for impermeable liner in BMPs is likely unnecessary since it didn't add any observed water quality benefits
    - This requirement could be removed from TCEQ Manual, especially for low concentration watersheds (e.g. residential areas)
  - 2. The operation of cells with Internal Water Storage enhanced the quality of effluents for many parameters in comparison to bottom underdrain operation
  - 3. Limestone-based media could be incorporated/incentivized into LID/BMP Manuals
  - 4. The treatment performance of sand filter basins (with limestone sand) was equivalent to bioretention systems
  - 5. Maintenance has shown to be key for good performance of the treatments

#### **Future of the LID Testbed**

P 1 ETR



- Real Time Sensing
- Real Time Flow and Water Quality Forecast
- Use of optimization algorithms for Optimal Control
- Study innovative stormwater treatment techniques
  - Soil amendments
  - Multiple layers with different media













## Thank you. Questions?

